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We consider the reflection of oblique compression waves from a two-dimensional,
steady, laminar boundary layer on a flat, adiabatic plate at free-stream pressures
such that dense-gas effects are non-negligible. The full Navier–Stokes equations are
solved through use of a dense-gas version of the Beam–Warming implicit scheme. The
main fluids studied are Bethe–Zel’dovich–Thompson (BZT) fluids. These are ordinary
gases which have specific heats large enough to cause the fundamental derivative of
gasdynamics to be negative for a range of pressures and temperatures in the single-
phase vapour regime. It is demonstrated that the unique dynamics of BZT fluids
can result in a suppression of shock-induced separation. Numerical tests performed
reveal that the physical mechanism leading to this suppression is directly related to
the disintegration of any compression discontinuities originating in the flow. We also
demonstrate numerically that the interaction of expansion shocks with the boundary
layer produces no adverse effects.

1. Introduction
An important loss mechanism in many transonic and supersonic flows is caused

by shock-induced boundary layer separation. In addition to significant losses, such
separations can set up self-sustained oscillations and therefore may give rise to vibra-
tion and noise. In the present investigation we examine one of the most elementary
shock–boundary layer interactions, namely that caused by the reflection of an oblique
shock from a rigid surface. Such interactions are prevalent in aerodynamic appli-
cations and can also occur in supersonic turbomachinery flows. Here we consider
a class of fluids of general interest as working fluids for so-called organic Rankine
cycles and demonstrate that the natural dynamics of such gases can reduce and even
eliminate shock-induced separation.

The physical mechanism leading to shock-induced separation is due to the strong
adverse pressure gradient carried by the incident compression shock. The adverse
pressure gradient decelerates the low-momentum flow in the boundary layer and
if the gradient is strong enough, a backflow, i.e. separation, region can occur. An
inspection of even the incompressible Navier–Stokes equations or of the classical
Faulkner–Skan flows reveals that it is the magnitude of the spatial gradients, rather
than the overall pressure change, which gives rise to separation. Explicit formulas
relating the pressure gradient to the onset of separation can be found in the well-
known references by Schlichting (1968) and White (1974).

An example which is easily reproduced, is closely related to the main work of
the present study, and which illustrates the influence of the pressure gradient on
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Figure 1. Configuration for numerical test of the effect of the width of the
incoming compression wave.

the boundary layer has been computed by Park (1994). A schematic of the flow is
depicted in figure 1. The numerical scheme and general configuration are identical to
those used later in the present study; full details are given in §§ 2–4. In this example,
the physical problem is that where a sequence of incoming compression waves of
increasing width are reflected from a laminar flat-plate boundary layer. In each case
the fluid is air at a free-stream Mach number, pressure, and temperature of 2.0, 0.134
atm, and 308.6 K. Because the pressures are well below those of the thermodynamic
critical point, the flow behaviour is that of a perfect gas. The strength of each
incident compression wave was fixed so that the flow deflection angle was 2.5◦. The
local Reynolds number at the wave impingement point was 2.96 ×105. The first wave
considered was a shock initiated at a distance ys above the plate. The other two
waves were smooth waves initiated at the same distance upstream of the plate but
were of width h centred on the initiation point of the shock. In the case of the shock
the impingement point was estimated by the oblique shock relations. In the case of
the smooth waves, the impingement point was taken to be the point at which the
first Mach wave strikes the plate. The resultant skin friction coefficient cf has been
plotted in figure 2. Because of the difference in definitions of the impingement point,
the scaling factor Ls will be different for the case involving the shock and the cases
involving smooth waves; this will cause a slight distortion and shifting of the profile
in the streamwise direction.

It is seen that the shock is strong enough to separate the laminar boundary layer
as evidenced by the region of cf < 0 on the plate. When the initial width of the
compression wave is 36% of the value of ys, the degree of separation, as measured
by the size of the skin friction coefficient, appears to be reduced. In the final case,
the total initial width of the incoming compression wave was 72% of ys. Inspection
of the skin friction variation plotted in figure 2 reveals that the adverse pressure
gradient in this case is so weak that the boundary layer remains attached. Because
the overall pressure rise resulting from the reflection has the same value for each
case, this series of examples gives further evidence for the idea that the likelihood
of separation depends on the width of the incident waves, i.e. on the strength of the
adverse pressure gradient, in addition to the value of the total pressure rise.
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Figure 2. Variation of skin friction for three compression waves in low-pressure air. The flow
deflection angle of each wave was 2.5◦. The plus symbols correspond to a compression shock
initiated at x = 0, y = ys. The open and solid circles denote compression waves having initial width
h = 0.36ys and h = 0.72ys, respectively.

Most of our intuition regarding compressible flows and therefore shock–boundary
layer interaction is based on the perfect gas theory. This gas model is an excellent
approximation when the pressures and densities are sufficiently low. However, in
high-pressure applications, the perfect gas model may not yield accurate predictions
of the actual gas response. More complex equations of state such as the van der
Waals, Redlich–Kwong, and Beattie–Bridgeman equations must then be employed.
Discussions of these well-known models can be found in most texts on engineering
thermodynamics, e.g. Jones & Hawkins (1986). When such high-pressure corrections
to the ideal-gas equation of state are required we will refer to the fluid as a dense, in
contrast to a dilute or low-pressure, gas.

Applications where high-pressure, i.e. dense-gas, effects must be considered include
the design of subcritical and supercritical power cycles (Reynolds & Perkins 1977
and Jones & Hawkins 1986) and chemical and fuel transport (Leung & Epstein
1988 and Bober & Chow 1990). Further examples include the design of hypersonic
and transonic wind tunnels as described by Enkenhus & Parazzoli (1970), Wagner
& Schmidt (1978), Simeonides (1987, 1990), Anderson (1991a, b), and Anders (1993).
Dziedzic et al. (1993) described the use of supercritical hydrogen to cool hypersonic
aircraft. A summary of the non-classical heat transfer in near-critical CO2 has been
given by Hall (1971) and Hsu & Graham (1976).

Recent studies have revealed that the dynamics of dense gases can differ significantly
from those of low-pressure gases, particularly when fluids other than air and water
are employed. Bethe (1942) and Zel’dovich (1946) were the first to point out that the
qualitative behaviour of compressible flows depends on the sign of the thermodynamic
parameter

Γ ≡ a

ρ
+
∂a

∂ρ

∣∣∣∣
s

, (1.1)
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where ρ and s are the fluid density and entropy and

a ≡
(
∂p

∂ρ

∣∣∣∣
s

)1/2

(1.2)

is the thermodynamic sound speed. The parameter (1.1) is frequently referred to as the
fundamental derivative of gasdynamics. The more recent studies of Cramer (1991a, b),
Cramer & Best (1991), and Cramer & Crickenberger (1992) reveal that qualitative,
but less dramatic, differences may also be observed when 0 < ρΓ/a < 1.

The value of (1.1) for perfect gases, i.e. gases satisfying the ideal gas law and the
condition of constant specific heats, is given by

Γ =
a

ρ

γ + 1

2
,

where γ is the ratio of specific heats. Because γ > 1 for all real gases, ρΓ/a > 1
whenever the perfect gas approximation is valid. It turns out that any fluid having
ρΓ/a > 1 exhibits the same qualitative behaviour as a perfect gas. The full range
of values which can be attained by the fundamental derivative are illustrated in
figure 3 where (1.1) has been evaluated for a range of commercially available heat
transfer and Rankine-cycle working fluids. In each case the temperature corresponds
to that at the thermodynamic critical point of the fluid in question. The gas model
is that developed by Martin & Hou (1955); full details of its implementation can be
found in § 3. The main point of interest in these plots is that the scaled value of the
fundamental derivative of most fluids has a local minimum at one-half to two-thirds
of the critical density. In figure 3 and in the remainder of this paper, the subscript
c will denote properties evaluated at the thermodynamic critical point. This local
minimum usually corresponds to values of ρΓ/a between zero and one. However,
some of the heavier heat transfer fluids have a local minimum which corresponds to
Γ < 0. This trend is seen to be in complete agreement with the work of Lambrakis &
Thompson (1972), Thompson & Lambrakis (1973), and Cramer (1989). The dynamics
of such negative-Γ fluids are the principal focus of the present study. Because of the
contributions of the earliest investigators, we will refer to any substance having Γ < 0
for a finite range of pressures and temperatures in the single-phase regime as Bethe–
Zel’dovich–Thompson (BZT) fluids. For a more complete discussion of the class of
fluids of the BZT type we refer the reader to the above-mentioned articles by Bethe,
Thompson and Zel’dovich, as well as the more recent reviews of Cramer (1989, 1991a)
and Menikoff & Plohr (1989).

One of the most striking phenomena associated with BZT fluids is due to the fact
that compression shocks violate the entropy inequality whenever Γ < 0 everywhere
in the flow of interest. As a result, any compression discontinuity inserted in such
a flow will disintegrate to form a centred compression fan analogous to the well
known Prandtl–Meyer expansion fans of the perfect gas theory. The inadmissibility
of compression shocks in negative-Γ fluids was first pointed out by Bethe (1942) and
Zel’dovich (1946). Centred compression fans in the context of steady and unsteady
flows of BZT fluids were first described by Thompson (1971) and Wendroff (1972).
Although compression shocks disintegrate in flows having Γ < 0 everywhere, expan-
sion shocks, i.e. shocks for which the pressure of a material particle decreases, not only
form naturally as a result of nonlinear steepening but also satisfy all the relevant ad-
missibility conditions. A complete discussion of the fundamental existence conditions
can be found in the recent reviews of Menikoff & Plohr (1989) and Cramer (1991a).
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Figure 3. Variation of ρΓ/a along the critical isotherm of each fluid. The gas model in each case
is that due to Martin & Hou (1955) with a power-law specific heat.

The motivation for the study of the shock-induced separation in BZT fluids becomes
clear when we recall that it is both the strength and the width of the incoming wave
which gives rise to separation. Even if a compression discontinuity is introduced into
a supersonic flow of a Γ < 0 fluid, the natural dynamics will be such that the original
discontinuity will arrive at other boundaries, e.g. other turbine blades, in the form of a
wave of non-zero width. The resultant pressure gradient experienced by the boundary
layer will be significantly decreased and it may turn out that the boundary layer can
remain attached. The goal of the present investigation is to examine whether such a
suppression of shock-induced separation can in fact be attained.

A first step toward understanding the dense-gas viscous–inviscid interaction was
accomplished by Kluwick (1994) who extended the classical triple-deck analysis to
include not only gases at high pressure but also those of the BZT type. In the case of
purely supersonic flows, the gasdynamic nonlinearity was found to be negligible for
the purposes of analysing the interaction region; this of course is consistent with the
conclusions of the classical theory. Thus, for a given incoming (inviscid) signal, we
expect no new physics in the interaction zone. We feel this result suggests that any
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suppression of separation will be due to the differences in the width of the incoming
compression wave. The Navier–Stokes computations of the present study are seen to
be consistent with this conclusion.

A second contribution of Kluwick (1994) is that he delineated the appropriate form
of the scaling laws for arbitrary, rather than perfect, gases. In particular, all of the
perfect gas scalings carry over immediately to the case of arbitrary gases provided
only that the pressure is measured by the pressure coefficient

cp ≡ p− p1

1
2
ρ1a

2
1M

2
1

, (1.3)

where M is the Mach number and the subscript 1 denotes the free-stream conditions,
and that the wall shear stress Tyx|w be measured by the skin friction coefficient

cf ≡ Tyx|w
1
2
ρ1a

2
1M

2
1

. (1.4)

As an example, we note that the pressure distribution in the interaction region can
be written

cp =

(
cf1

)1/2(
M2

1 − 1
)1/4

P (x̃), (1.5)

where cf1 is the skin friction immediately upstream of the interaction region and P is
the same function of the scaled x-variable (x̃) as is found in the classical, i.e. perfect
gas, theory.

An important parameter in any study of shock–boundary layer interaction is the
overall pressure rise required for separation. Here we combine the estimate of Katzer
(1989) with scaling laws of Kluwick (1994) to obtain

cpT
(
M2

1 − 1
)1/4(

cf1

)1/2
> 2.6 (1.6)

as the criterion for separation. Here cpT is the pressure coefficient associated with the
total pressure rise resulting from the reflection. As pointed out by Katzer (1989) the
numerical factor on the right-hand side of (1.6) can vary from author to author in
the general range of 2 to 3. As an example we consider the shock–boundary layer
interaction corresponding to figure 2. The above ratio was found to be

cpT
(
M2

1 − 1
)1/4(

cf1

)1/2
≈ 4.02

which is consistent with the criterion (1.6). Further numerical comparisons using
the same numerical scheme as described here were carried out by Cramer, Park &
Watson (1997). This study revealed that Kluwick’s extension of the triple-deck theory
to dense gases agrees well with Navier–Stokes solutions of the shock-boundary layer
interaction problem.

The same physics which causes the disintegration of compression discontinuities
in Γ < 0 fluids also gives rise to the formation of expansion shocks. A natural
question when considering the use of BZT fluids in applications is whether such
expansion shocks can have deleterious effects upon interaction with boundary layers.
Kluwick (1994) has also addressed this issue in the context of the triple-deck theory.
His conclusions were that the interaction should resemble that corresponding to an
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Figure 4. Coordinate system and computational domain for the numerical calculations.

expansion discontinuity in a perfect gas. As a result, expansion shocks will also not
increase the likelihood of separation. In the present study we provide verification for
this claim through use of our Navier–Stokes code.

In § 2 we record the full set of Navier–Stokes equations employed in the present
study and in § 3 we describe the gas models and fluid properties used. The numerical
scheme and the various consistency checks employed are described in § 4. Our primary
results are given in § 5.

2. Formulation
In the present study, we restrict our attention to steady, two-dimensional flow

of a Navier–Stokes fluid. Body forces and heat sources will be neglected and the
flow is regarded as being single phase, in equilibrium and sufficiently far from the
thermodynamic critical point; it is this set of assumptions which permits us to model
the fluid as a Navier–Stokes fluid. The x- and y-coordinate axes are depicted in figure
4. The origin is taken to be at some arbitrary distance x0 upstream of the flat plate,
the positive x-axis is in the direction of the undisturbed flow, and the y-direction is
transverse to the incoming flow.

In the implementation of the numerical scheme described in § 4, the unsteady form
of the Navier–Stokes equations will be required. When these equations are written in
conservative form, we have

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
=
∂F v

∂x
+
∂Gv

∂y
, (2.1)

where

Q =


ρ
ρu
ρv
E

 , F =


ρu

ρu2 + p
ρuv

u(E + p)

 , G =


ρv
ρuv

ρv2 + p
v(E + p)

 , (2.2)
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and

F v =


0
Txx
Txy
wx

 , Gv =


0
Tyx
Tyy
wy

 . (2.3)

The quantities u and v are the x- and y-components of the fluid velocity, p and ρ are
the fluid pressure and density, and

E ≡ ρ
(
e+

u2 + v2

2

)
. (2.4)

Here the thermodynamic quantity e is the thermal energy; thus, (2.4) will be referred
to as the total energy per unit volume. The quantities Txx, Tyx = Txy , Tyy are the
Cartesian components of the Navier–Stokes stress tensor which can be written

Txx = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y
,

Txy = Tyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

Tyy = (λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x
,


(2.5)

where µ and λ are the shear and second viscosities which satisfy

µ > 0, µb ≡ λ+ 2
3
µ > 0; (2.6)

µb is the bulk viscosity. The quantities wx and wy are the energy fluxes defined as

wx ≡ Txxu+ Txyv − qx, wy = Tyxu+ Tyyv − qy, (2.7)

where q = −k∇T is the Fourier heat flux vector, T is the absolute temperature, and

k > 0 (2.8)

is the thermal conductivity. The first two terms in each of (2.7) represent the work
done per unit time by the stress tensor. The first row of (2.1) is recognized as the
mass equation, the second and third rows are the two components of the momentum
equation, and the fourth row is the energy equation.

The plate is taken to be adiabatic, impenetrable, and located at y = 0, x > x0,
where x0 is the location of the leading edge of the plate. As a result, the physical
boundary conditions at the plate can be written

u = v =
∂T

∂y
= 0 for y = 0, x > x0. (2.9)

The flow far upstream, i.e. as x → −∞, is taken to be uniform with velocity com-
ponents u = U1 > 0, v = 0. The flow velocity U1 is such that the incoming flow
is supersonic. Here we restrict our attention to reflections which leave the flow
supersonic; thus, for the present purposes, Mach reflections will be ignored.

3. Gas models
A full specification of any single-phase gas requires a knowledge of the functions

p = p(ρ, T ) and cv∞ = cv∞(T ), (3.1)
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and

µ = µ(ρ, T ), λ = λ(ρ, T ), k = k(ρ, T ), (3.2)

where cv∞(T ) is the low-pressure, i.e. the ideal gas, specific heat at constant volume. In
the usual way we will refer to the first of (3.1) as the equation of state. In the present
investigation we employ the equation of state proposed by Martin & Hou (1955).
The advantages of this model are that it is widely employed in engineering practice
and it has a strong analytical basis so that only a minimum number of experimental
parameters are required for its use. The Martin–Hou equation agrees well with the
measured properties of light substances such as nitrogen and steam. Good agreement
is also found when comparisons can be made to the heavier fluids of interest in
studies of BZT fluids. The work of Thompson & Lambrakis (1973) and Cramer
(1989) has also shown that it appears to be conservative with respect to predictions
of negative nonlinearity. Details of the implementation of the Martin–Hou equation
can be found in the articles by Martin & Hou (1955) and Cramer (1989).

The ideal-gas specific heat will be modelled by a power law of the form

cv∞(T ) = cv∞
(
Tref

)( T

Tref

)n
, (3.3)

where Tref is a reference temperature, and n is a material-dependent exponent. The
advantage of (3.3) is its simplicity and accuracy over the temperature ranges of
interest in the present study. The values of cv∞(Tref) and n are typically estimated by
fitting (3.3) to empirical data or more complex models. Details of the fitting procedure
for the heavier fluorocarbons are described by Cramer (1989).

Once the temperature dependence of the ideal-gas specific heat and the full form
of the equation of state (3.1) are known, all other thermodynamic parameters can be
determined through use of the standard identities found in most texts on thermody-
namics.

In the dense gas regime, the variation of the transport properties (3.2) with both
density and temperature will be important. In the present investigation we employ the
dense-gas shear viscosity and thermal conductivity models developed by Chung, Lee
& Starling (1984) and Chung et al. (1988). The key characteristics of these models
are similar to the Martin–Hou equation. That is, they have a strong analytical basis,
require only a minimum amount of physical data, and they reduce to standard ideal-
gas formulas in the low-pressure limit. Furthermore, the comparisons provided by
Reid, Prausnitz & Poling (1987) reveal reasonable accuracy in the dense gas regime.

Finally, the bulk viscosity (2.6) must be specified. The authors know of no bulk
viscosity data for light fluids in their high-pressure regime nor appropriate data for
the heavier hydro- and fluorocarbons of interest here. Throughout, we will simply take
the ratio µb/µ to be a numerical constant. It should be noted that errors in the value
of the bulk viscosity are not likely to have a significant effect on the results. In the
lowest-order approximation of the boundary layer, the viscous–inviscid interaction
region (as described by triple-deck theory), and the inviscid flow, the bulk viscosity
is seen to be negligible. The only influence of µb is expected to be in the description
of the interior of shock waves. Numerical trials reported by Park (1994) have verified
that reasonable variations in the value of µb have essentially no effect on the complete
viscous–inviscid interaction.

In order to ensure that the flow is single phase, the final pressures and temperatures
were checked against the Riedel (1954) vapour-pressure correlation. If any point was
found to be in the two-phase regime, the whole calculation was rejected.
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As pointed out above, each model for the equation of state, ideal-gas specific heat,
transport properties, and the phase boundary require only a minimum number of
physical data. The required quantities include the values of the pressure, temperature,
and specific volume at the thermodynamic critical point, the boiling temperature, the
molecular weight, the acentric factor, and the dipole moment of the molecule. The
acentric factor is a macroscopic measure of the acentricity of the molecule and is
zero for spherical molecules such as those of monatomic gases. The definition of this
factor may be found in Reid et al. (1987) which reveals that it may be computed
directly from vapour-pressure data and the critical properties. The dipole moment is
a measure of the polarity of the molecule and is zero for non-polar substances. When
polar substances such as steam, ammonia, acids, alcohols, and freons are considered,
two more empirical constants are required. These are discussed below when the
modelling of steam is considered. It is important to note that our original restrictions
to single-phase, equilibrium Navier–Stokes flows permits us to use a gas model which
determines the pressure and the transport properties uniquely in terms of the density
and temperature. As a result, no new length scales are introduced into the problem.
The issues of boundary layer similarity and scalings for the interaction zone remain
the same as in the perfect gas theory.

The main Navier–Stokes computations described in §§ 1, 4, and 5 involve air at
low pressure, steam, PP11 (C14F24), and FC-71 (C18F39N). In the remainder of this
Section, we summarize the basis for the choices of the relevant physical parameters.
The actual numerical values are tabulated by Park (1994).

Most of the data for air were taken from Rohsenow, Harnett & Ganic (1985). The
dipole moment was taken to be zero and the acentric factor was taken to be that of
N2, i.e. 0.039. The bulk viscosity was taken to be 0.6µ as suggested by Truesdell (1953).
Because the specific heat of air is nearly constant over a wide range of temperatures,
we have taken n = 0 in the calculations involving air in §§ 1 and 4.

The physical data for steam are also well-established. Most of the relevant param-
eters were taken or estimated from those provided by Jones & Hawkins (1986) and
Reid et al. (1987). Because water is a polar substance, the shear viscosity and ther-
mal conductivity models of Chung et al. (1984, 1988) require a so-called association
factor and a second parameter related to the self-diffusion coefficient of water. Both
parameters were chosen to be the values given by Chung et al. (1984) in their Tables
I and II. No data for the bulk viscosity of water vapour are available at either low
or high pressure. Here we simply set the ratio µb/µ = 1. Specific tests conducted by
Park (1994) show negligible variation in the resultant skin friction, wall pressure, and
wall temperature values as µb ranges from 0 to 5µ.

The bulk of the data for the heat transfer fluids FC-71 and PP11 were taken or
estimated from the manufacturers’ (3-M Corporation and Imperial Smelting Cor-
poration) technical publications. A detailed discussion of the estimation procedures
and results for the critical properties, boiling temperature, and specific heat data is
found in the article by Cramer (1989). Private communication between the first author
(M.S.C.) and the manufacturers’ representatives indicates that PP11 and FC-71 are
non-polar so that the dipole moment was taken to be zero for each fluid. No data for
the bulk viscosity of either PP11 or FC-71 exist and we took µb/µ = 5 for each fluid.

4. Numerical scheme
The Navier–Stokes equations (2.1)–(2.8) are solved by the Beam–Warming (1978)

implicit scheme adapted to allow for the dense-gas equation of state and transport
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Figure 5. Comparison of the results of the present scheme with experiments of Hakkinen et al.
(1959) and other computations. Large solid circles denote the experimental results, small solid circles
denote the results of the present scheme, open circles denote the computations of Zhong (1994),
diamonds denote the computations of MacCormack (1982) and triangles denote the computations
of Walters (1994). Free-stream data and grid sizes are provided in table 1.

laws. Explicit second- and fourth-order artificial viscosities were added to reduce
oscillations at the shocks. The advantage of this scheme is that it is well known and
can be immediately extended to imperfect gases. Full details of its implementation in
the present application and the non-dimensionalization scheme employed are given
by Park (1994).

To minimize the computation time without sacrificing accuracy, a grid clustered in
the direction transverse to the plate was employed. The mapping between the physical
and computational domain is given by

ξ =
x

L
, η = 1− ln

{
β + 1− y/H
β − (1− y/H)

}/
ln

{
β + 1

β − 1

}
,

where ξ = ξ(x) and η = η(y) are the non-dimensional computational variables, β
is the clustering parameter satisfying β > 1, and L and H are the dimensions of
the computation domain in the flow and transverse directions, respectively. Typical
values of β were between 1.002 and 1.003. As a result, the number of points across
the boundary layer at the shock impingement point was approximately 20–40.

The computational domain is depicted in figure 4. The shock was introduced either
at the inflow boundary (x = 0) or at the upper boundary (y = H). At each of these
boundaries, the flow variables were fixed at either the free-stream conditions or the
conditions after the incident shock; the latter conditions were computed from an
iterative solution to the oblique shock relations similar to that described by Cramer
(1991b). At the right-hand boundary, second-order extrapolated outflow conditions
were imposed. At the lower boundary (y = 0), either symmetry conditions or the
physical boundary conditions were applied as appropriate.

Extensive numerical checks and comparisons with known solutions have been



12 M. S. Cramer and S. Park

Reference p1(atm) T1(K) M1 p3/p1 Grid sizes

Present work 0.134 308.6 2 1.4 156× 101
Walters (1994) 0.133 293 2 1.4 62× 113
MacCormack (1982) * * 2 1.4 32× 32
Zhong (1994) * * 2 1.4 102× 144
Hakkinen et al. (1959) * * 2 1.4 N/A

Table 1. Data of free-stream conditions, pressure rise, and grids corresponding to figure 5. The
* indicates that no explicit statement of the thermodynamic properties were given. However, it is
believed that these were at low pressure and room temperature. The subscripts 1 refer to quantities
evaluated in the free stream and the subscript 3 denotes quantities evaluated after reflection.

carried out by Park (1994). A comparison of the results of our computations with
the experimental data of Hakkinen, Greber & Trilling (1959) is presented in figure
5. The computed results of MacCormack (1982), Zhong (1994), and R. W. Walters
(private communication, 1994) are also included. The free-stream conditions and
shock pressure rise are listed in table 1. The grid size employed by each investigator is
also reported. Inspection of figure 5 reveals reasonable agreement of our computations
with those of previous authors. Because the free-stream pressures are on the order
of one atmosphere or less, we regard these comparisons to be evidence that our
dense-gas version of the Beam–Warming scheme recovers the perfect-gas results in
the low-pressure limit.

Park (1994) has compared the results of the present scheme to the detailed com-
putations of dense-gas boundary layers reported by Whitlock (1992), Cramer &
Whitlock (1993), and Cramer, Whitlock & Tarkenton (1996). In these studies a stan-
dard finite difference scheme was applied to the dense-gas version of the compressible
boundary layer equations. Mach numbers ranging from zero to 3 and free-stream
pressures ranging from one atmosphere to slightly supercritical values were reported.
Whitlock’s results were found to be in excellent agreement with Anderson’s (1991a)
Navier–Stokes computations of compressible, dense-gas boundary layers on flat plates
(private communication with S. T. Whitlock). Excellent agreement between Park’s re-
sults and those of Whitlock was reported which provides partial verification of the
implementation of the numerical scheme and the dense-gas viscosity and thermal
conductivity models.

The authors are not aware of any computations of the present kind which involve
shock–boundary layer interactions in dense gases. The interactions presented by
Wagner & Schmidt (1978) correspond to a free-stream pressure of one bar. The
Navier–Stokes computations of Anderson (1991a) involve transonic flow and nearly
normal shocks on airfoils; as result, no direct comparisons are appropriate. However,
Cramer et al. (1997) have verified that the numerical scheme described here agrees well
with the scaling laws of the dense-gas triple-deck theory developed by Kluwick (1994).
The cases considered included free-stream pressures corresponding both perfect-gas
and dense-gas flows.

On the basis of the comparisons discussed above, we conclude that the dense-gas
version of the Beam–Warming scheme is capable of describing the flows of interest
in the present investigation.

Extensive tests were also made by Park (1994) to determine the grid refinement
required to render the computed results independent of the grid size. It was found
that ξ vs. η grids in the range of 125×76 to 187×101, depending on the fluid, were
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adequate to ensure that the grid size no longer influenced the results, although even
more refined grids were typically used. In any case, any comparisons were made
using identical grids. Furthermore, all cases presented here were checked for iterative
convergence. It is expected, although not formally guaranteed, that any observed
differences are due to the physics rather than differences in numerical error.

5. Results
The first comparison to be made is that between steam and FC-71. The former is

chosen because it is a non-BZT fluid which is commonly employed in heat transfer
and Rankine cycle applications. The latter (FC-71) is a BZT fluid with a critical
temperature approximately equal to that of steam. The following comparison will be
direct in the sense that the behaviour of both steam and FC-71 will be evaluated at
equivalent flow conditions.

We first consider the flow of steam at a free-stream pressure, temperature, and
Mach number equal to 8.55 atm, 646.15 K, and 2.0, respectively. The flow deflection
angle carried by the incident shock was 3◦ and the position at which the incident
shock strikes the plate corresponds to a local Reynolds number of 2.96×105. This
local Reynolds number is based on the free-stream conditions and Ls is defined to be
the distance from the leading edge to the shock impingement point as computed by
the oblique shock relations for pressurized gases. An outline of the development of
these shock relations was given by Cramer (1991b). The computed skin friction and
wall pressure coefficients are plotted in figures 6(a) and 6(b). Inspection of figure 6(a)
reveals that the incident shock is strong enough to separate the laminar boundary
layer; the separation zone extends from approximately 0.8Ls to 1.18Ls. In fact, the skin
friction plot exhibits the classical double minimum profile suggesting that separation
is well-established and not marginal.

We next consider the flow of the BZT fluid FC-71 at exactly the same free-stream
Mach number, pressure, and temperature as for the steam. Furthermore, the flow
deflection angle of the incident compression wave is also taken to be 3◦. Thus, the
geometry generating the compression can be said to be identical for both fluids. It
is both intuitively obvious and suggested by the detailed analysis of Kluwick (1994)
that the appropriate measure of the strength of the reflection is the increase in the
pressure coefficient (1.3). It is easily demonstrated that this quantity will then be
identical for each flow, at least according to linear theory. For the stated free-stream
conditions and flow deflection angle the upstream and downstream values of the
scaled fundamental derivative ρΓ/a were found to be −0.04 and −0.16, respectively.
The fundamental shock existence conditions described by Menikoff & Plohr (1989)
and Cramer (1991a) can be employed to show that this compression discontinuity
is inadmissible. Furthermore, it is easily verified that the original discontinuity will
disintegrate into a centred isentropic compression fan. Because this compression wave
arrives at the boundary layer with a non-zero width, the definition of the impingement
Reynolds number must be reconsidered. In order to make a meaningful comparison,
we choose the initiation point of the compression wave to be such that the local
Reynolds number at the approximate centre of the wave is equal to that used in the
calculation involving steam, i.e. 2.96× 105. The location of the position of the centre
of the wave impingement region was estimated as that predicted by the numerical
solution to the exact oblique shock relations for the inadmissible discontinuity. It
is easily shown that the computed impingement point of the inadmissible shock
will always lie between the impingement points of the first and last Mach waves
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Figure 6. (a) Skin friction and (b) pressure coefficient variation for compression waves in steam and
FC-71. The flow deflection angle carried by each compression wave is 3◦ and the free-stream Mach
number and temperature are 2.0 and 646.15 K. The open circles correspond to steam at p1 = 8.55
atm, the plus symbols denote FC-71 at the same pressure as steam and the cross symbols denote
FC-71 at p1 = 1 atm.

of the actual centred fan, at least when Γ < 0 both upstream and downstream of
the proposed discontinuity. In fact, weak shock theories of the type described by
Cramer (1991a) and Crickenberger (1991) can be used to show that the inadmissible
discontinuity always bisects the resultant centred fan. This result is recognized as the
Γ < 0 counterpart of the bisection rule described in many texts on gasdynamics; see
e.g. Whitham (1974).
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Inspection of figures 6(a) and 6(b) reveals that the interaction of the centred fan
in FC-71 results in an attached boundary layer. The minimum skin friction is seen
to be approximately 3× 10−4 whereas that for steam is seen to be approximately
−6 × 10−4. Coincidentally, this large difference in the minimum skin friction is
approximately the same as that seen in the comparisons between the shock and the
isentropic compression wave depicted in figure 2. Numerous tests indicate that the
results have converged and that the grid sizes (218×101 for FC-71 and 156×101 for
steam) used were adequate to ensure that the results are independent of the grid. We
therefore conclude that the observed suppression of separation is of physical rather
than numerical origin.

The variation of the pressure coefficient plotted in figure 6(b) shows that the total
change in cp during the reflection involving FC-71 is slightly less than that of steam.
This difference is due to the fact that the compression in FC-71 is isentropic whereas
that in steam involves an increase in entropy. Similar differences between compression
fans and compression shocks were seen in the Euler computations of Monaco (1994).
When the separation parameter of (1.6) is computed it is found that

cpT
(
M2

1 − 1
)1/4

/
(
cf1

)1/2 ≈ 4.78 for steam and ≈ 4.01 for FC− 71.

As expected, both values are well above those needed to produce separation. We also
note that the value for FC-71 is approximately that recorded for the shock-induced
separation seen in figure 2.

In order to demonstrate that the suppression of separation in FC-71 is due to the
novel dynamics associated with the Γ < 0 regime and not to the particular choice of
FC-71, we have computed a case where the free-stream state of FC-71 corresponds
to a nearly perfect gas. The free-stream temperature, free-stream Mach number, the
flow deflection angle of the incident shock, and the impingement Reynolds number
were all taken to be identical to those of steam. The only difference between this
case and those already discussed is that the free-stream pressure was taken to be 1
atm instead of 8.55 atm. The values of ρΓ/a ahead of and behind the incident shock
were both found to be approximately 1.0; this value is to be expected given the large
values of the ideal-gas specific heat of FC-71. As in the case of steam the resultant
compression discontinuity can be shown to be admissible and arrives at the boundary
layer as a discontinuity, at least according to the inviscid theory. The skin friction
and wall pressure coefficient have been plotted in figure 6(a, b). Because the incoming
signal is now a shock and the scaled strength parameter

cpT
(
M2

1 − 1
)1/4(

cf1

)1/2
≈ 4.76,

the boundary layer is seen to separate with approximately the same minimum pressure
coefficient as obtained for steam. The main difference between the skin friction
variations is the apparent width of the separation zone. However, this difference is
due to the scaling of x with Ls, chosen to ensure that the impingement Reynolds
numbers of steam and FC-71 were identical. Because the Mach numbers were also
matched, the values of Ls will be different for different fluids. In particular, it is the
differences in the factor µ/ρa which cause the differences in Ls.

The results of this comparison strongly suggest that the suppression of separation
in FC-71 is due to the unique dynamics of BZT fluids in their Γ < 0 regime. A
detailed inspection of the incoming boundary layer as well as similar inspections of
dense-gas boundary layers computed by Whitlock (1992) reveal no unusual dynamics
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in the viscous flow regime. We therefore conclude that the main physical reason for
the suppression of separation in BZT fluids is due to the non-zero width of the
incoming compression wave which in turn is due to the disintegration of compression
discontinuities in the Γ < 0 regime.

To further illustrate the effect of the width of the compression fan on the boundary
layer we consider the flow of FC-71 at exactly the same free-stream pressure (8.55
atm), temperature (646.15 K) and Mach number (2.0) as used in our comparison
between steam and FC-71. The initiation point of the compression discontinuity was
chosen so that the approximate impingement Reynolds number was again 2.96 × 105

and the transverse distance from the plate was identical to that used in the previous
example involving steam and FC-71. The only difference is that the flow deflection
angle of the incident wave was taken to be 6.5◦ instead of 3◦. The free-stream value
of ρΓ/a is of course identical to that of the previous example involving FC-71, i.e.
−0.04, and the value of ρΓ/a after the discontinuity was found to be −0.06. As in
the previous example, the discontinuity can be shown to be inadmissible; as a result it
naturally disintegrates into a centred fan. The resultant skin friction and wall pressure
coefficient variations are plotted as open circles in figure 7(a, b). Although the wave
strikes the boundary layer as a fan, the strength of the overall compression is over
twice as large as that of the previous example of a compression fan. As is evident
from figure 7(a), the pressure rise is large enough to separate the boundary layer.

It is of interest to note that the relation between the flow deflection angle θ2 carried
by the incident fan and the incident wave strength and wave width (∆x) can be
approximated by

cp2 ≈ 2θ2√
M2

1 − 1
and ∆x ≈ − M4

1

M2
1 − 1

ρ1Γ1

a1

θ2∆y, (5.1)

where cp2 is the pressure coefficient immediately following the fan as estimated by
the linear simple-wave theory and ∆y is the distance between the initiation point of
the fan and the plate measured transverse to the flow. The second of (5.1) can be
obtained from a ρΓ/a = O(1) version of the weak shock theory of Crickenberger
(1991) or Cramer (1991a) or by a small-disturbance approximation of Thompson’s
(1971) expression for the Mach angle in an isentropic simple wave:

dψ

dθ
=
ρΓ

a

M2

M2 − 1
,

where ψ is the exact (convected) Mach angle and M is the local Mach number. By
an inspection of (5.1) we conclude that, as the flow deflection angle (θ2) increases,
both the strength and width increase at approximately the same rate. A comparison
of figures 6(a) and 7(a) suggests that the effect of the increase in strength on the
separation condition dominates that of the increase in width which in turn results in
the observed flow separation.

To isolate the effect of the width of the incoming wave we have computed the flow
of FC-71 under exactly the same free-stream conditions and impingement Reynolds
number as the case depicted by open circles in figure 7(a, b), with exactly the same
inadmissible compression discontinuity but the initiation point of the compression
discontinuity in the present case is located at a transverse distance which is 61%
farther from the plate. As a result, the compression wave striking the plate boundary
layer is 61% wider than that of the previous case. The results for the skin friction and
wall pressure coefficient are plotted in figure 7(a, b) as cross symbols, which reveals
that the increase in the initiation distance and therefore the increase in final wave
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Figure 7. Effect of compression fan width on (a) skin friction and (b) pressure coefficient in
FC-71 for flow deflection angle 6.5◦, free-stream Mach number 2.0, free-stream pressure 8.55 atm
and impingement Reynolds number 2.96 × 105. The cross symbols denote a fan which has been
initiated at a transverse distance which is 61% farther from the plate than the case depicted by
open circles.

width is sufficient to attach the flow. With respect to the task of isolating the effect
of wave width, we regard the comparison seen in figure 7(a, b) to be more direct
than that between steam and FC-71 because all parameters except the width were
held fixed in the former. In this sense this comparison is closely related to that done
for air in § 1. Because all viscous effects are expected to be identical in the examples
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Figure 8. (a) Skin friction and (b) pressure coefficient corresponding to the interaction of an
admissible expansion shock with a boundary layer in PP11. The free-stream pressure, temperature,
and Mach number are 13.8 atm, 648.85 K, and 2.0 respectively.

illustrated by figure 7(a, b), these comparisons provide further strong evidence for
the idea that the observed suppression of separation is caused by differences in the
incoming signal which in turn is due to the unique inviscid dynamics of BZT fluids.

As a final example of shock–boundary layer interaction in BZT fluids we consider
the case of the collision of an expansion shock with a boundary layer. The fluid
is PP11 at a free-stream pressure, temperature, and Mach number of 13.8 atm,
648.85 K, and 2.0, respectively. The initiation point of the wave was taken to be such
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that impingement Reynolds number was again 2.96 × 105. The flow deflection angle
was taken to be −3◦ which is, of course, consistent with the generation of an expansion
wave. The value of ρΓ/a in the free stream was −0.20 and the value immediately
after the expansion discontinuity was found to be −0.12. Under these conditions it
can be shown that this discontinuity is admissible and therefore propagates as a shock
wave. The variation of the skin friction and wall pressure coefficient are plotted in
figures 8(a) and 8(b). Inspection of the first of these figures reveals that the expansion
shock causes the skin friction to increase in the interaction region. The observation
that expansion shocks cause no difficulties with respect to separation is consistent
with the remarks of Kluwick (1994) as well as reasoning based on the perfect-gas
theory.

A second example of the interaction of an admissible expansion shock with a
laminar boundary layer in FC-71 and somewhat different free-stream conditions was
presented by Park (1994). His results are completely consistent with those plotted
here.

6. Summary
The primary goal of the present investigation was to examine viscous–inviscid

interactions in BZT fluids. This was done by generating numerical solutions to the full
Navier–Stokes equations for the well-understood benchmark problem of the reflection
of an oblique shock from a laminar boundary layer on a flat plate. The main result
is the demonstration that the use of BZT fluids in the Γ < 0 regime can suppress
boundary layer separation. The evidence presented here as well as the analytical
work of Kluwick (1994) strongly suggests that the primary physical reason for this
suppression is the disintegration of compression discontinuities at temperatures and
pressures corresponding to Γ < 0. As a result, the incident compression wave is of
non-zero width which represents a decrease in the adverse pressure gradient carried
by the wave. If the decrease in the pressure gradient is large enough for a given
strength of the compression wave, the boundary layer is able to remain attached
during the interaction. A similar mechanism for the suppression of separation was
observed in the example involving air and depicted in figures 1 and 2. Thus, the key
to understanding the suppression mechanism is the non-classical dynamics of BZT
fluids in the inviscid portion of the flow.

An advantage of the discovery of this relatively simple physical mechanism is that
much of our perfect-gas intuition regarding the viscous–inviscid interaction can be
carried over to BZT fluids with little or no modification. The main effort to reduce
separation will therefore be to control the inviscid portion of the flow.

We have also verified Kluwick’s (1994) prediction that the interaction of expansion
shocks with boundary layers causes no new difficulties with respect to separation.
This conclusion is consistent with the idea that the non-classical physical effects are
primarily observed in the inviscid part of the flow.

The separation criterion (1.6) is clearly violated when the disintegration of the
compression discontinuity results in an attached boundary layer. However, condition
(1.6) only holds when the incoming signal is a discontinuity rather than a smooth
compression. As a result, it is not appropriate to conclude that triple-deck theory,
in its most general sense, is invalid. In fact, the authors believe that an important
task for future studies is the development of a modified triple-deck analysis which
can describe compression waves of non-zero width; a reasonable approach would
be similar to that given by El-Mistikawy (1994). The main goal of such an analysis
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would be to provide the modified separation condition for BZT fluids. In addition, the
scaling laws for the dependence on the wave width would be clearly delineated. When
the triple-deck results are combined with the weak shock theory of Cramer (1991a)
and Crickenberger (1991) or Euler computations similar to those of Monaco (1994),
design strategies for the control of the inviscid flow can then be easily developed.

This research was funded by the National Science Foundation under grant number
CTS-8913198. The authors would also like to thank Professor S. A. Ragab for many
helpful suggestions in the area of computational methods and Professor L. T. Watson
for making computer facilities available.
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